
Station Documentation
Release 0.2

Ben Hirsch

Jul 13, 2018

Contents

1 Features 3

2 Requirements 5

3 Documentation Contents 7

4 Contributing to Station Development 39

5 Issues? 41

6 Credits 43

i

ii

Station Documentation, Release 0.2

Repository on Github

Station helps Laravel developers to auto-generate, configure, and deploy an admin interface with advanced scaffolding,
migrations and models for their Laravel software. It includes an artisan build command and a simple but extensible
UI.

If you are tired of creating CRUD-capable interfaces from scratch, Station may be perfect for you. In a few minutes
you can have a simple, but advanced back-end admin installed and ready for use by you, your customers, and your
customers’ users.

Station shines when used as a CMS however it is not your typical template-based CMS system. It does not include
front-end templates or layouts. Instead it is intended to be used as a database, content, and user management system.
It takes away the heavy-lifting involved in creating a back-end for your web site or application. But, it leaves the
front-end a blank canvas for your creativity!

Contents 1

https://github.com/LifeboyTech/station
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Station Documentation, Release 0.2

2 Contents

CHAPTER 1

Features

• A password-protected section of your domain under /station/... or the virtual directory name of your
choice.

• Authenticated user system utilizes Laravel’s native user model.

• A simple set of configuration text files defines your entire database, permissions and navigation schema.

• A build command at php artisan station:build will generate + run migrations and create models.

• Define multiple user groups where users can only access areas configured for their own group.

• A bootstrap-based UI containing necessary behaviors such as drag and drop reorderables, image upload w/ crop
tools, nested sortables, and more.

• User management functions such as password reminders and password reset.

3

https://laravel.com/docs/5.2/authentication

Station Documentation, Release 0.2

4 Chapter 1. Features

CHAPTER 2

Requirements

• All of the basic requirements of the Laravel library

• GD (compiled with PHP, if you want to take advantage of the image resizing features)

5

https://laravel.com/docs/5.2#server-requirements

Station Documentation, Release 0.2

6 Chapter 2. Requirements

CHAPTER 3

Documentation Contents

3.1 Installation

1. Environment

Make sure Laravel is already installed and running. You should already have a valid database connection. This install
process works best on a fresh Laravel installation.

2. Install Using Composer

Station should be installed via Composer by requiring the lifeboy/station package in your project’s
composer.json.

{
"require": {

"lifeboy/station": "dev-master"
}

}

Then run a composer update

composer update

This assumes you have a working dev or production environment with Laravel 5 and a database already installed and
configured.

3. Register Station Within Laravel

To use Station, you must register the provider when bootstrapping your Laravel application.

Find the providers key in app/config/app.php and register the Station Service Provider.

'providers' => array(
// ... add below ...
Lifeboy\Station\StationServiceProvider::class,

(continues on next page)

7

http://getcomposer.org

Station Documentation, Release 0.2

(continued from previous page)

Collective\Html\HtmlServiceProvider::class,
),

Also update the aliases key in app/config/app.php

'aliases' => [
// ...
'Form' => Collective\Html\FormFacade::class,
'Html' => Collective\Html\HtmlFacade::class,

],

In app/Http/Kernel.php, update the $routeMiddleware class variable:

protected $routeMiddleware = [
// ...
'station.session' => \Lifeboy\Station\Filters\Session::class

];

4. Publish Station’s Assets to Laravel

php artisan vendor:publish

Note: We sometimes see a “path not found” warning on this step. You can safely ignore this.

5. Run Default Migrations

php artisan migrate

6. Set the Administrator Email

In config/packages/lifeboy/station/_app.php set the root_admin_email to your email address.

7. Run Station’s Build Command

This will generate new migrations, run the new migrations, generate models, and seed the database.

php artisan station:build

8. Test Installation

You should now be able to browse to your app at: http://{host}/station/. You can login using
user/password: admin/admin. Upon login, you will see a welcome screen:

8 Chapter 3. Documentation Contents

Station Documentation, Release 0.2

9. Configure Station and Your Panels!

That’s it! Next you will configure Station and tailor it to the needs of your users.

Note: You will be able to configure and test Station now. However, to run Station in production, please make sure
that your email system has been configured and enabled. (See Configuring Emailers for more info).

3.2 Basic Principles & Configuration

Station has three levels of configuration: Panel Level, Element Level and Application Level.

3.2.1 Panel Level Configuration

Each individual section that appears in the navigation bar is referred to as a “panel”. By default, a panel contains all
of the functionality to create, remove, update and delete records from a database table or foreign table. Panels can be
customized in numerous ways. Panels can also be overriden entirely so that you may develop your own functionality
and circumvent default panel behaviors.

To learn all of the specifics of configuring panels, refer to Working With Panels.

3.2.2 Element Level Configuration

Each panel can have any number of elements associated with it. Typically each element refers to a specific element in
your database but that is not always the case. A panel can have “virtual” elements as well as no elements at all.

To learn all of the specifics of configuring panel elements, refer to Working With Panels.

3.2.3 Application Level Configuration

All of Station’s top level configuration occurs in the config/packages/lifeboy/station/_app.php file.
The boilerplate version of this file was copied to your app during the installation process.

Following is a list of all of the available configuration options:

3.2. Basic Principles & Configuration 9

Station Documentation, Release 0.2

name

This is the name of your site or application

root_admin_email

This value will be seeded into the users table when the admin user is created during the installation
process.

root_uri_segment

This value is what Station will use as its pseudo-directory “slug”. By default this is set to stationwhich
means that all of the URLs for Station will be found at http://my-site.com/station/.... You
could use admin which would result in all URLs looking like http://my-site.com/admin/...

panel_for_user_create

This is the name of the panel which is used for creating new users. You may never need to use this as your
app will likely have it’s own onboarding process. However this panel is shipped with Station in case you
want a simple way for new users to create an account.

user_group_upon_register

This is the group which a new user will be automatically set to upon creation.

css_override_file

Optionally set this to the URL or path of a .css file which will be loaded on every Station URL. This is
excellent for adding branding specifics to your Station installation.

media_options

AWS: Station currently only supports file uploads to AWS/S3. Enter your bucket, key and secret key
here to establish connectivity. If your app does not require uploads then you do not need to configure this
option.

Sizes: This is where you set the default image sizes for all uploaded images. If any of your panel elements
utilize image uploads and do not specify a set of image sizes, these sizes will be used. This is a handy way
to set standard sizes for all of your images site-wide, if needed. For more information how to configure
this option, refer to the sizes configuration documentation.

user_groups

This associative array defines the user groups for your app but also, just as importantly, defines the en-
tire navigation structure of Station. Please refer to the boilerplate sample of config/packages/
lifeboy/station/_app.php, included in the installation, to visualize the structure of this docu-
ment.

10 Chapter 3. Documentation Contents

Station Documentation, Release 0.2

user_groups.[group name]: This associative array’s key is the group name. This is only for internal use.
You can use any name you want. When you run php artisan station:build your groups will
be seeded to the groups table in your database and presented as options in your users panel.

user_groups.[group name].starting_panel: This is the panel key that a user belonging to this group will
be redirected to upon log in. The syntax for this is panel_name.ACTION, where action is L (list view),
C (create view), or U (update view).

user_groups.[group name].panels This nested associative array defines the navigation that a user from
this group will see in their navigation bar. It also defines the sections, panel titles, and permissions that a
user of this group has regarding these panels. The format is as follows:

<?php

'panels' => [

'demo_section' => ['name' => 'Section Header', 'is_header' =>
→˓TRUE, 'icon' => 'glyphicon glyphicon-book'],

'posts' => ['name' => 'Posts', 'permissions' =>
→˓'CRUDL'],

// ... more sections headers and panels go here ...
]

In the above example, demo_section is the key name for a section header. The actual name is irrelevant.
Just make sure all of your section header keys have unique names because this is PHP array and you
cannot duplicate your key names! is_header indicates that this item is only a header title and not an
actual panel. The icon option allows you to use bootstrap glyphicon names to accompany your section
headers.

The posts key references an actual panel, not a section header. This key must match the name of a file
in the config/packages/lifeboy/station directory where the Working With Panels is defined.
The name option is the actual title of the panel as it will appear in the naviagtion.

The permissions option sets the permissions that a user from this group has on this panel. You can enter
any combination of the letters C.R.U.D. and L:

C = Create
R = Read
U = Update
D = Delete
L = List

For example, if you only specify the letter L for permissions then the user will only be able to list the
records in this panel. Specifying all of the letters gives the user full permissions on this panel.

html_append_file

This option allows you to specify an HTML or PHP blade file to append to every Station view. This is
ideal for analytics.

html_prepend_content_file

Like html_append_file you can specify an HTML or PHP blade file to prepend to the content area
of every panel in Station. This is ideal for onboarding progress timelines or system-wide, universal alerts.

3.2. Basic Principles & Configuration 11

Station Documentation, Release 0.2

strict_domains

This forces all requests within Station to return a 404 unless one of the domains specified in this array is
the domain indicated in the request.

3.2.4 Configuration Variables

The %user_id% variable can be used in any value of the application or panel config files. The user’s ID will be
replaced. This allows you to create panels which display only user-specific data. See Working With Panels for more
examples of where and how this can be used. See below on how this configuration variable can be used in the
application level configuration:

3.2.5 Custom Configuration Variables

You can create your own custom configuration variables custom_user_vars which are accessible in any panel
configuration file and the application configuration file. You can also create custom_view_vars which are avail-
able in any Station views. Just add them to the top-level of your config/packages/lifeboy/station/
_app.php file.

<?php

'custom_user_vars' => [

'user_company_ids' => '\CompanyRepository::id_list_for_user(%user_id%)',
'user_store_ids' => '\StoreRepository::id_list_for_user(%user_id%)',

],

'custom_view_vars' => [

'onboarding_progress_html' => '\UserRepository::onboarding_progress_html_for(
→˓%user_id%)',
],

In this example we are utilizing a CompanyRepository class, which is part of our Laravel app. This class is
returning a set of IDs based on the current user’s ID. Those IDs are now stored in %user_company_ids%, which
can be used in any panel configuration file.

Similarly, with custom_view_vars we are creating the variable $onboarding_progress_html which is
now accessible in any Station view. In this example we’re generating a snippet of HTML which is being inserted into
the file that we specified as our html_prepend_content_file. That snippet of HTML contains information
about onboarding specific to the user who is logged in.

You can create as many of these custom variables as you wish.

3.3 Working With Panels

Panels are the heart and soul of Station. Out of the box, panels contains all of the functionality necessary for a user to
manipulate a specific type of data in your database. There are numerous options for panels and elements giving you
the flexibility to craft back-end tools to fit virtually any scenario or database structure.

Typically each panel maps to a database table one-to-one. However, a panel can also contain one or more subpanels
as well as references to other tables for lookup capabilities.

12 Chapter 3. Documentation Contents

Station Documentation, Release 0.2

A panel can also be complete overriden so you can build your own functionality from scratch, but within the user-
authenticated comfort of Station.

3.3.1 The Build Command

Each time you add a new panel or change a panel’s configuration you need to run php artisan
station:build.

This artisan command will analyze your panels and elements and then do the following:

• generate migrations for any missing database fields, including database pivot tables

• run the new migrations

• generate / refresh models with foreign relationships for each panel (see “Working with Station Models” for more
info)

• seed the database (only when new user groups have been added)

If you attempt to navigate to a newly created panel in the Station navigation, you will likely encounter errors. You
must run the build command first.

3.3.2 Accessing Panel Configuration

In your Laravel app you may wish to access a panel’s configuration array. To accomplish this, just add use
Lifeboy\Station\Config\StationConfig as StationConfig to the top of any class. Then,

$my_panel_config = StationConfig::panel('my_panel_name');

3.3.3 Panel Creation Workflow

As discussed in “Application Level Configuration”, when you add new array elements to the user_groups associa-
tive array in your config/packages/lifeboy/station/_app.php file, you are in-effect registering new
panels with Station.

Station is able to determine the behaviors of each panel given the values of the configuration parameters found in each
panel’s configuration file. For example, if you have a panel named posts in your config/packages/lifeboy/
station/_app.php file, then you need a corresponding posts.php file in the config/packages/
lifeboy/station/ directory to define the parameters of that panel.

For example, refer to the config/packages/lifeboy/station/users.php file which was packaged with
your installed copy of Station, you will notice that there are two top-level array keys, panel_options and
elements:

'panel_options' => [

// define your panel-level options here...
],

'elements' => [

// define your element-level options here...
],

3.3. Working With Panels 13

Station Documentation, Release 0.2

Panel options control the overall configuration of the panel (think of this as database table-level options). Elements
define how your users interact with specific database fields.

Without further ado, what follows is an exhaustive list of each and every panel and element option possible along with
specific examples for each. Dive in!

3.4 Panel Options

The panel_options key of the array defined in any of the files at /config/packages/lifeboy/station
represents the panel-level options which are available to users of Station.

Generally, each panel is mapped to a specific database table. However, this is not always the case. Some panels have
an override defined. See below for the full documentation on configuring panels.

Note: All options marked with a * are required

3.4.1 table *

Quite simply, this is the name of the database table to which this panel corresponds. Note that you can have many
panels which use the same table.

'panel_options' => [

'table' => 'posts',
...

],

3.4.2 single_item_name *

This is the singular version of the type of data which is being dealt with in this panel.

'panel_options' => [

'table' => 'posts',
'single_item_name' => 'Post',
...

],

3.4.3 allow_bulk_delete

Setting this option to true will allow users to select and delete multiple items in list views (including filtered list views)

3.4.4 default_order_by

This option allows you to set the order in which records for this panel will be displayed. You can choose one or more
database fields. You will use traditional SQL syntax.

14 Chapter 3. Documentation Contents

Station Documentation, Release 0.2

'panel_options' => [

'table' => 'posts',
'default_order_by' => 'title ASC, date DESC',
...

],

3.4.5 has_timestamps

If this option is set to true then the migrations and models generated for this panel/table will create and utilize Laravel
Eloquent’s created_at and updated_at timestamp fields.

'panel_options' => [

'table' => 'posts',
'has_timestamps' => TRUE,
...

],

3.4.6 js_include

This option allows you to specify a javascript file to include on all pages of this panel. It is great for sewing in your
own functionality. jQuery is available on all pages as well.

'panel_options' => [

'table' => 'posts',
'js_include' => '/js/my-own.js',
...

],

3.4.7 nestable_by

This is a very powerful feature which will allow your users to reorder and hierarchically “nest” the records of this
table. When enabled your users can drag and drop records to reorder them arbitrarily as well as “nest” them into a
tree-like model.

3.4. Panel Options 15

Station Documentation, Release 0.2

'panel_options' => [

'table' => 'pages',
'nestable_by' => ['position', 'parent_id', 'depth'],
...

],

The three array elements are (1) the field name which contains the overall sort-order (2) the field name which contains
the ID of the parent of the record. Records on the top-level have a parent_id of 0 and (3) the depth level of the
record.

Note: You do not need to also create ‘‘position‘‘, ‘‘parent_id‘‘, and ‘‘depth‘‘ elements in your panel’s :ref:‘element-
options‘ configuration. Station will manage these for you.

3.4.8 no_build

If this option is set to true then the php artisan station:build command will simply skip this panel entirely
when it attempts to create models and migrations. This is useful for panels where you want to use the override
option and you have no need for a data model to be available.

3.4.9 no_data_alert

This option, defined by an array, can be used to configure a special message to users of a panel which has no data.
This can be useful for when you want to assist users on creating a type of data for the first time.

'panel_options' => [
'table' => 'posts',
'single_item_name' => 'Blog Post',
'no_data_alert' => [

'header' => 'You have no blog posts yet',
'body' => 'Go ahead and create your first blog post now!'

]
],

16 Chapter 3. Documentation Contents

Station Documentation, Release 0.2

3.4.10 no_data_force_create

When this option is set to true it will redirect a user who is trying to access a panel’s (initial) list view to the panel’s
create view instead.

'panel_options' => [

'table' => 'posts',
'no_data_force_create' => TRUE,
...

],

3.4.11 override

This option allows you to completely override the functionality of a specific panel using a controller and method from
your Laravel app. For an example of this, look at the welcome panel which shipped with Station.

'panel_options' => [

'table' => 'posts',
'override' => ['L' => 'MyControllerName@method_name'],
...

],

The L above means that this will override the (initial) list view of your panel. However you can over-
ride the U (update) function instead and just leave the list view as-is using 'override' => ['U' =>
'MyControllerName@method_name'],. When using the update override, the record your user is attempt-
ing to modify will be passed as data to your controller method automatically.

3.4.12 preview_url

This option allows you to specify a array template for generating the url for a button which will become visible in the
update view of every record in this panel.

'panel_options' => [

'table' => 'posts',
'preview_url' => ['http://www.domain.com/post/', 'posts.id', '/preview'],
...

],

The elements of this array will concatenate to form the preview URL. When one of the array’s elements is in the format
table_name.field_name it will be replaced by the actual record’s value. So the example above might produce
http://www.domain.com/post/9999/preview and a button which looks like the one below will appear on
your panel’s update pages:

3.4. Panel Options 17

Station Documentation, Release 0.2

3.4.13 reorderable_by

This option allows you to specify a field name to use as your table’s “position” field. This is a field which is used to
store an arbitrary, user-defined sorting-order for the records in the table. When enabled, your users will be able to drag
and drop records to reorder them within the list view of this panel. Each time a user reorders the records, all of the
values for the field you specify will be re-written from 0 through X.

'panel_options' => [

'table' => 'categories',
'reorderable_by' => 'position',
'default_order_by' => 'position',
...

],

Note: You do not need to also create a ‘‘position‘‘ element in your panel’s :ref:‘element-options‘ configuration. Station
will manage this for you.

3.4.14 where

This option allows you to append a SQL where clause onto the standard query which retrieves the data for this panel.

'panel_options' => [

'table' => 'posts',
'where' => 'title LIKE "%robot%"',
...

],

This is also a good opportunity to pass in Configuration Variables or Custom Configuration Variables if those are
relevant to your app.

'panel_options' => [

'table' => 'employees',
'where' => 'company_id IN (%user_company_ids%)',

],

3.5 Element Options

The elements key of the array defined in any of the files at /config/packages/lifeboy/station repre-
sents the list of elements which are available to users of Station.

Generally, each element is mapped to a specific database field. However, this is not always the case. Some elements
are “virtual”. See below for the full documentation on configuring elements.

Note: All options marked with a * are required!

Important: You do not need to create an id element in your panels. Station assumes that any panel which is mapped
to a table * has an id field and it will auto-generate this field for you as your table’s primary key and index.

18 Chapter 3. Documentation Contents

Station Documentation, Release 0.2

3.5.1 (key name) *

The key of each element (unless the element type is virtual) is the name of the database field of this panel’s table
*.

<?php

'first_name' => [

'label' => 'First Name',
'type' => 'text',
...

],

In this example, first_name is the name of the database field.

3.5.2 label *

This is the user-facing “name” of the field. This name will appear in a number of places. (1) As the input label in the
create and update form. (2) on the top of a list view column (if this element has been given list permissions) and (3) in
validation error messages, when a user has not fulfilled validation requirements for this element.

<?php

'first_name' => [

'label' => 'First Name',
'type' => 'text',
...

],

3.5.3 type *

This is the “type” of element and there are numerous options. Your choice of element type is based primarily on which
kind of browser input you wish to use, however it also influences the field type used in the auto-generated database
migrations:

<?php

'is_active' => [

'label' => 'Activated?',
'type' => 'boolean',
...

],

3.5. Element Options 19

Station Documentation, Release 0.2

text

• This will generate a VARCHAR(255) database field.

• The input for user manipulation is a simple <input type="text">

integer

• This will generate a INT(12) database field.

• The input for user manipulation is a simple <input type="text">

boolean

• This will generate a TINYINT(1) database field.

• The input for user manipulation is a toggle “on/off” switch (which masks a <input
type="checkbox">).

image

• This will generate a VARCHAR(255) database field.

• The input for user manipulation is a special image uploader w/ crop tool mechanism.

• See the sizes option for more details on configuration, sizing and cropping.

file

• This will generate a VARCHAR(255) database field.

• The input for user manipulation is a special file uploader modal dialog.

• You may also supply a allowed_types array containing the file-extensions this will allow.

• You may also supply a directory string containing the remote directory that uploaded files will save to.

20 Chapter 3. Documentation Contents

Station Documentation, Release 0.2

• The uploaded file name will be saved to the database field.

tags

• This will generate a VARCHAR(255) database field.

• The input for user manipulation is a special tagging interface.

• The field data is written to the database as comma delimited values.

select

• This can be used in conjunction with another table or with static data (see the data option).

• The input for user-manipulation uses the wonderful Chosen library which contains a dropdown with
search bar

multiselect

• This can only be used when a relationship with another table has been defined (see the data option).

• Data will be written to the database via a pivot table which is auto-generated via The Build Com-
mand.

• The input for user-manipulation uses the wonderful Chosen library which contains a taggable drop-
down with search bar

3.5. Element Options 21

https://harvesthq.github.io/chosen/
https://harvesthq.github.io/chosen/

Station Documentation, Release 0.2

radio

• This will generate a VARCHAR(255) database field.

• This can be used in conjunction with another table or with static data (see the data option).

• The input for user-manipulation uses enhanced radio buttons (masking standard <input
type="radio"> inputs).

virtual

• Virtual type fields do not actually map to real database fields.

• No field will be generated from The Build Command.

• They are often used in conjunction with the concat option in order to create links in a list view
which require one or more other fields from the same record.

<?php

'permalink' => [
'label' => 'Permalink',
'type' => 'virtual',
'concat' => '"<a href=\'http://www.domain.com/faq#answer-", id, "\'

→˓target=\'_blank\'>Preview"',
'display' => 'L'

],

date / datetime

• These will generate ether a DATE() or DATETIME() database field.

• The input for user-manipulation is a calendar day-picker with or without a time-picker.

22 Chapter 3. Documentation Contents

Station Documentation, Release 0.2

float

• This will generate a FLOAT(10,2) database field.

<?php

'tax' => [
'label' => 'Tax on Clothing Exemption Cap',
'type' => 'float',
'format' => 'money',
'prepend' => '$',
'attributes' => '',
'rules' => '',
'display' => 'CRUD'

],

The above example would produce:

textarea

• This will generate a TEXT() database field.

<?php

'description' => [
'label' => 'Description',
'helper' => 'markdown',
'type' => 'textarea',
'rows' => 18,
'embeddable' => TRUE,
'display' => 'CRUD'

],

hidden

• This will generate a VARCHAR(255) database field.

• As the name suggests this will simply render a <input type="hidden"> input in your forms.

• This can be very useful when used in conjunction with the default option.

3.5. Element Options 23

Station Documentation, Release 0.2

password

• This will generate a VARCHAR(255) database field.

• The input for user manipulation is a simple <input type="password">

subpanel

• This is a way to “nest” a panel within another panel.

• You will need to configure the data option (see the data option for more details) in order to define
which panel becomes nested and how the two panels are linked.

3.5.4 allow_upsize

This option is only available to elements using the type “image”. When set to true, a user uploading an image is
allowed to use a smaller image size than the largest dimension expected. The image will be magnified to fit the largest
dimension. See more on sizing using the sizes option.

3.5.5 append

This option allows you to append text to an element input field. The element must have 'type' => 'text'. This
text will not be written to the database.

<?php

'subdomain' => [

'label' => 'Subdomain',
'type' => 'text',
'append' => '.domain.com'
...

],

24 Chapter 3. Documentation Contents

Station Documentation, Release 0.2

3.5.6 attributes

The Build Command utilizes the wonderful Laracast Generators package to generate migrations for your panels. If
you add pipe-delimited arguments to the attributes option, those arguments will be passed to the generator as
specific schema.

<?php

'email' => [

'label' => 'Email',
'type' => 'text',
'attributes' => 'unique|index|default("foo@example.com")',
...

],

Note that attributes only affect the database schema and have no other affect on panel validation behaviors. To
control panel validation behaviors use the rules option.

3.5.7 concat

This option is often used in conjunction with elements of 'type' => 'virtual' (read more about virtual). This
option can be set to an array containing a mixture of strings and field names to create a new field, ideal for using in a
panel’s list view.

<?php

'preview' => [
'label' => 'Preview',
'type' => 'virtual',
'concat' => '"<a href=\'http://", subdomain, ".domain.com\' target=\'_blank\

→˓'>Preview"',
'display' => 'L'

],

This would render a link on every row of the panel’s list view. The link would be of the format: <a href="http:/
/{subdomain}.domain.com">Preview.

3.5.8 data

This option defines how the data for this element is populated. It is required whenever you use the element type
select, multiselect, radio or subpanel.

1. Static Data Options

• You want to present a list of static options for a user to choose from

• You are using element 'type' => 'select' or 'type' => 'radio'

• The input options will be pre-populated using the array values you supply

• The options array values will be seen/chosen by the user, however the keys will be saved to the
database.

3.5. Element Options 25

https://github.com/laracasts/Laravel-5-Generators-Extended
https://github.com/laracasts/Laravel-5-Generators-Extended#migrations-with-schema

Station Documentation, Release 0.2

<?php

'favorite_animal' => [
'label' => 'Your Favorite Animal',
'type' => 'radio', // <=== this works for `select` as well
'default' => '0',
'is_filterable' => TRUE,
'data' => [

'options' => [
0 => 'None',
1 => 'Pig',
2 => 'Ocelot',
3 => 'Llama',

]
]

],

2. Foreign Table Data Lookup

• You want to present a list of options for a user to choose from, but is populated using a foreign
table’s data

• You are using element 'type' => 'select', 'type' => 'radio' or 'type' =>
'multiselect'

• The input options will be pre-populated using the data from the foreign table

• The foreign table’s chosen id value will be saved to this table or a pivot table.

Example using select:

<?php

'favorite_animal' => [
'label' => 'Favorite Animal',
'type' => 'select',
'data' => [

'join' => TRUE,
'relation' => 'belongsTo', // <== This relationship is written to the

→˓auto-generated model
'table' => 'animals',
'display' => ['animals.name', ' ' ,'(', 'animals.genus', ' : ',

→˓'animals.species', ')'],
'no_model' => TRUE // only use this if you want to avoid writing this

→˓relationship to the model
]

],

Example using multiselect:

<?php

'favorite_animals' => [
'label' => 'Favorite Animals',
'type' => 'multiselect',
'data' => [

'join' => TRUE,
(continues on next page)

26 Chapter 3. Documentation Contents

Station Documentation, Release 0.2

(continued from previous page)

'relation' => 'belongsToMany', // <== This relationship is written to
→˓the auto-generated model

'table' => 'animals',
'pivot' => 'animals',
'display' => 'animals.name',
'order' => 'animals.name'

]
],

It is important that you specify a display value so that Station knows which of the foreign table’s
fields to use to display in the dropdown or on the radio buttons. Notice that you can provide an array for
display which will concatenate field names and your own strings. This allows you to create a display
using multiple foreign table fields.

3. Subpanel Data

• You want to nest a subpanel within this panel so a user can create, update, delete, and reorder a
foreign table’s data from within this panel!

• This makes foreign table data manipulation possible.

<?php

'comments' => [
'label' => 'Comments',
'type' => 'subpanel',
'permissions' => 'CRUD', // <== User has all permissions on this subpanel
'data' => [

'join' => TRUE,
'relation' => 'hasMany',
'table' => 'comments',
'key' => 'post_id' // <== This is the foreign key, which will be

→˓auto-generated by Station's build command
]

],

When a subpanel is defined like this, Station will look for another panel configuration file called
comments.php. That panel is configured just as you would configure a non-nested panel. You can
even use the reorderable_by option in your subpanel so the user can reorder/sort the subpanel’s data
right from the parent panel!

Note: you do not need to create an element for the foreign key when you make your subpanel’s configura-
tion file. Station will create it for you.

3.5.9 default

Use this to set a default value for an element. This value will be first selected in a create or update form.

<?php

'favorite_animal' => [

'label' => 'Your Favorite Animal',
'type' => 'text',

(continues on next page)

3.5. Element Options 27

Station Documentation, Release 0.2

(continued from previous page)

'default' => 'Panda',
...

],

3.5.10 disabled

When this option is set to true this element’s input will be rendered with a disabled attribute in the create and
update view.

3.5.11 display

This option informs Station when to display this element. You may indicate one or more of the following letters:
C.R.U.D.L.

<?php

C = Create
R = Read
U = Update
D = Delete
L = List

<?php

'favorite_animal' => [

'label' => 'Your Favorite Animal',
'type' => 'text',
'display' => 'CRUDL' // <=== This element will appear in all views & controls
...

],

'favorite_movie' => [

'label' => 'Your Favorite Movie',
'type' => 'text',
'display' => 'CRUD' // <=== This element will not appear in the list view
...

],

3.5.12 embeddable

This option, when set to true, enables inline embedding of images and documents within the body of an element of
'type' => 'textarea'.

<?php

'description' => [
'label' => 'Description',
'type' => 'textarea',
'rows' => 20,

(continues on next page)

28 Chapter 3. Documentation Contents

Station Documentation, Release 0.2

(continued from previous page)

'embeddable' => TRUE,
'sizes' => [

'original' => ['label'=>'Original'],
'journal-body-620x0' => ['label'=>'Full Column Width', 'size'=>'620x0'],
'journal-body-250x0' => ['label'=>'Partial Column Width', 'size'=>'250x0'],

]
],

You can (and should) set the sizes options to the sizes which you want any uploaded images to be resized to.

3.5.13 format

This is a helper option which will provide “masking” to your input field to help guide a user’s entry. There are currently
two formats available:

phone

<?php

'mobile_phone' => [

'label' => 'Mobile Phone #',
'type' => 'text',
'format' => 'phone',
'prepend_icon' => 'glyphicon glyphicon-earphone',
...

],

This will provide special guidance for the user to enter properly formatted phone numbers.

money

<?php

'unit_msrp' => [

'label' => 'Unit MSRP',
'type' => 'float',

(continues on next page)

3.5. Element Options 29

Station Documentation, Release 0.2

(continued from previous page)

'format' => 'money',
'prepend' => '$',
...

],

This will provide special guidance for the user to enter properly formatted prices.

3.5.14 help

This options allows you to set some “helper” text which will display next to the element input in the create and update
views.

<?php

'bio' => [

'label' => 'Company Bio',
'type' => 'textarea',
'help' => 'Optional. Just some brief, fun facts about your company',
...

],

3.5.15 helper

This option allows you to choose a pre-baked “help” functionality. There is currently only one option, markdown
which is best when used with elements of 'type' => 'textarea'. When you choose the markdown option
your users will see a “Help Formatting” link above the textarea. When clicked, a modal overlay will render containing
a Markdown syntax cheat sheet.

<?php

'description' => [

'label' => 'Description',
'helper' => 'markdown',
'type' => 'textarea',
'rows' => 6,
'display' => 'CRUD'

],

30 Chapter 3. Documentation Contents

Station Documentation, Release 0.2

3.5.16 is_filterable

When this option is set to true and the element has type select and it has a display value allowing it to be shown in
the list view (L), then a filter dropdown will appear allowing users to filter the list view by a value present in the table.
The dropdown even contains a search tool, compliments of the Chosen library.

3.5.17 permissions

This is only used with the elements of 'type' => 'subpanel'. This defines which permissions a user has on
the subpanel items according to the following list of actions:

3.5. Element Options 31

https://harvesthq.github.io/chosen/

Station Documentation, Release 0.2

C = Create
R = Read
U = Update
D = Delete

<?php

'colors' => [
'label' => 'Product Colors',
'type' => 'subpanel',
'display' => 'CU',
'permissions' => 'C',
'data' => [

'join' => TRUE,
'relation' => 'hasMany',
'table' => 'colors',
'key' => 'product_id'

]
],

In the above example a user will be able to view the colors in the subpanel (according to the display option) however
they have not been given permissions to do anything other than create new ones. They cannot delete or update
because the letters D and U are not present.

3.5.18 prepend

This option allows you to prepend text to an element input field. The element must have 'type' => 'text'. This
text will not be written to the database.

<?php

'subtotal' => [
'label' => 'Subtotal',
'type' => 'float',
'format' => 'money',
'prepend' => '$',
'display' => 'CRUD'

],

3.5.19 prepend_icon

This allows you to set a bootstrap glyphicon class name in order to prepend an icon to your elements input field. This
only works with 'type' => 'text'.

<?php

'url' => [

(continues on next page)

32 Chapter 3. Documentation Contents

Station Documentation, Release 0.2

(continued from previous page)

'label' => 'Web Address',
'type' => 'text',
'prepend_icon' => 'glyphicon glyphicon-globe',
...

],

3.5.20 rows

This is only relevant for elements of 'type' => 'textarea'. This is a simple integer which defines how many
rows of visible space will be applied to the <textarea> input. This is handy for when you want to encourage, or
discourage long-form typing.

3.5.21 rules

This option configures the validation of an element. You must set the value to a pipe-delimited set of rules. The
validation options include and are limited to the Laravel Validation Rules. You set the rules in exactly the same way
that you would define them natively in Laravel.

<?php

'title' => [

'label' => 'Post Title',
'type' => 'text',
'rules' => 'required|unique,posts,title|between:3,125',
...

],

Note: When using the unique rule, Station uses a , while Laravel requires a :

3.5.22 sizes

This option allows you to specify one or more image sizes and locations for uploaded images. Upon upload, only the
name of the uploaded file will be saved to your database. The image itself will be resized, cropped, and saved to the
locations you specify. If you wish, you can specify global application defaults in “media_options” so that you do not
need to repeat the same sizes and locations in every panel.

<?php

'logo' => [

'label' => 'Logo Image',
'help' => '(270 x 270 min)',
'type' => 'image',
'display' => 'CRUD',

(continues on next page)

3.5. Element Options 33

https://laravel.com/docs/5.2/validation#available-validation-rules

Station Documentation, Release 0.2

(continued from previous page)

'allow_upsize' => TRUE,
'sizes' => [

'original' => ['label'=>'Original'],
'logo-300x150' => ['label'=>'300 x 150','size'=>'300x150', 'letterbox' => '

→˓#FFFFFF'],
'logo-270x270' => ['label'=>'Fixed Width (270px)','size'=>'270x0'],
'logo-180x180' => ['label'=>'Square Thumbnail','size'=>'180x180'],

]
],

In the example above, there are 4 different sizes (including an untouched, original version) which will be created upon
upload. An associative array defines how the original, uploaded image will be manipulated and transmitted to your
CDN server. Note: currently only Amazon S3 is supported. Here is the breakdown on how to configure the sizes
option:

(key)

• The key name, ex. logo-300x150 is the name of the directory on the CDN server where the image will be
saved.

• If the directory does not exist it will be created automatically.

label

• This is the title of the image version which will display in the crop and preview tool (see screenshot below).

• This can be any descriptive value you wish.

size

• This defines the dimensions of the manipulation. Leaving this blank or undefined will save an unmodified
version of the uploaded image.

• Setting a width only (500x0) or height only (0x500) will preserve the image’s aspect ratio but will force the
image to resize to the defined dimension.

• Setting both a width and a height (500x500) will center-crop the image and allow your users to further crop it
via Station’s crop tool.

letterbox

• When this is defined with a size of fixed width and height, the resulting crop will be an outer-crop instead of a
center-crop.

• Use this option to define the hex color value that will be used to fill any remaining space surrounding the cropped
image.

Station’s preview and crop tool:

34 Chapter 3. Documentation Contents

Station Documentation, Release 0.2

3.5.23 thumb_size

This option defines the dimensions of the square thumbnail in the panel’s list view for elements which have 'type'
=> 'image'. By default the value is 100. However, it is possible to set this to a smaller integer.

3.6 Custom Element Options

You are always free to use your own custom element options.

Station will not return any errors if it finds extra, unreserved options in your elements. In fact setting custom options
can be very useful if you are trying to create systems which need to map against your underlying data schema. Read
more about this in “Accessing Panel Configuration”.

3.7 Working with Station Models

Every time you run The Build Command all of your models (at least all of the models which are associated with
Station panels) get regenerated. You might be thinking, “Well that sucks, what if I want to add my own methods to
those models?!”“. Guess what? That is not a problem. Station’s models carefully avoid any custom code you’ve

3.6. Custom Element Options 35

Station Documentation, Release 0.2

written and instead only replace Station’s own boilerplate class variables and methods in your models, leaving your
own work intact.

<?php namespace App\Models;

class Document extends \Eloquent {

//GEN-BEGIN

protected $table = 'documents';
protected $guarded = array('id');

//GEN-END

// Feel free to add any new code after this line

}

This is an example of the model that is generated for a documents panel after running The Build Command. Any
code that is added after //GEN-END will be safely ignored upon regeneration. So, feel free to add your own scopes,
accessors, mutators, and other Laravel Eloquent goodies!

3.8 Configuring Emailers

Station does not require the setup of any of Laravel’s native functions or drivers, with one exception, . . . email.

In order for Station to function properly it needs to be able to send emails for password reset requests. Therefore,
please make sure that your app’s config/mail.php has been configured and is running properly.

3.9 License

The MIT License (MIT)

Copyright (c) 2016 Lifeboy Tech LLC

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

36 Chapter 3. Documentation Contents

Station Documentation, Release 0.2

3.10 Roadmap & Todos

There are still a few missing pieces from our transition from Laravel 4 to 5:

• Fix emailers (upgrade to L5)

• Replace Session::* usage from Laravel 4

• Replace Request::* usage from Laravel 4

• Replace ->lists() - convert to array - this now returns an object in L5

• Add user self-edit, self-password-changer

• Tag final production release and change install instructions to use that tag.

3.10. Roadmap & Todos 37

Station Documentation, Release 0.2

38 Chapter 3. Documentation Contents

CHAPTER 4

Contributing to Station Development

I welcome and encourage contributions. Please submit pull-requests. I will review and consider implementing.

My only guideline is that enhancements to Station should be within the simple and straightforward spirit of the project.

To build documentation, navigate to /docs directory and run touch *.rst; make html;. Read more

39

http://www.sphinx-doc.org/en/stable/

Station Documentation, Release 0.2

40 Chapter 4. Contributing to Station Development

CHAPTER 5

Issues?

Please use the Github issue tracker to report problems or to get answers to your questions.

41

https://github.com/LifeboyTech/station/issues

Station Documentation, Release 0.2

42 Chapter 5. Issues?

CHAPTER 6

Credits

Station was conceived and built by Ben Hirsch. The project was named by Tim Habersack who also contributed to
feature development and strategy in its early phases.

43

https://github.com/phirschybar
https://github.com/timbotron

	Features
	Requirements
	Documentation Contents
	Contributing to Station Development
	Issues?
	Credits

